CDH Hadoop + HBase HA 部署详解

采菊篱下 发表了文章 • 0 个评论 • 1094 次浏览 • 2016-11-07 21:07 • 来自相关话题

CDH 的部署和 Apache Hadoop 的部署是没有任何区别的。这里着重的是 HA的部署,需要特殊说明的是NameNode HA 需要依赖 Zookeeper
 

准备

Hosts文件配置:
cat > /etc/hosts << _HOSTS_
127.0.0.1 localhost
10.0.2.59 cdh-m1
10.0.2.60 cdh-m2
10.0.2.61 cdh-s1
_HOSTS_各个节点服务情况
cdh-m1 Zookeeper JournalNode NameNode DFSZKFailoverController HMaster
cdh-m2 Zookeeper JournalNode NameNode DFSZKFailoverController HMaster
cdh-s1 Zookeeper JournalNode DataNode HRegionServer对几个新服务说明下: 
JournalNode 用于同步 NameNode 元数据,和 Zookeeper 一样需要 2N+1个节点存活集群才可用。DFSZKFailoverController(ZKFC) 用于主备切换,类似 Keepalived 所扮演的角色。
 
NTP 服务
设置时区
rm -f /etc/localtime
ln -s /usr/share/zoneinfo/UTC /etc/localtime配置NTP Server
yum install -y ntp
cat > /etc/ntp.conf << _NTP_
driftfile /var/lib/ntp/drift

restrict default nomodify
restrict -6 default nomodify

server cn.ntp.org.cn prefer
server news.neu.edu.cn iburst
server dns.sjtu.edu.cn iburst
server 127.127.1.1 iburst

tinker dispersion 100
tinker step 1800
tinker stepout 3600
includefile /etc/ntp/crypto/pw

keys /etc/ntp/keys
_NTP_

# NTP启动时立即同步
cat >> /etc/ntp/step-tickers << _NTP_
server cn.ntp.org.cn prefer
server news.neu.edu.cn iburst
server dns.sjtu.edu.cn iburst
_NTP_

# 同步硬件时钟
cat >> /etc/sysconfig/ntpd << _NTPHW_
SYNC_HWCLOCK=yes
_NTPHW_启动并设置开机自启动
/etc/init.d/ntpd start
chkconfig ntpd on配置 NTP Client
yum install -y ntp
# 注意修改内网NTP Server地址
cat > /etc/ntp.conf << _NTP_
driftfile /var/lib/ntp/drift

restrict default nomodify
restrict -6 default nomodify

restrict 127.0.0.1
restrict -6 ::1

server 10.0.2.59 prefer

tinker dispersion 100
tinker step 1800
tinker stepout 3600
includefile /etc/ntp/crypto/pw

keys /etc/ntp/keys
_NTP_

# NTP启动时立即同步
cat >> /etc/ntp/step-tickers << _NTP_
server 10.0.2.59 prefer
_NTP_

# 同步硬件时钟
cat >> /etc/sysconfig/ntpd << _NTPHW_
SYNC_HWCLOCK=yes
_NTPHW_启动并设置开机自启动
/etc/init.d/ntpd start
chkconfig ntpd on检查 NTP 同步
ntpq -p

# 结果
remote refid st t when poll reach delay offset jitter
==============================================================================
*time7.aliyun.co 10.137.38.86 2 u 17 64 3 44.995 5.178 0.177
news.neu.edu.cn .INIT. 16 u - 64 0 0.000 0.000 0.000
202.120.2.90 .INIT. 16 u - 64 0 0.000 0.000 0.000JDK
创建目录
mkdir -p /data/{install,app,logs,pid,appData}
mkdir /data/appData/tmpcd /data/install
wget -c http://oracle.com/jdk-7u51-linux-x64.gz
tar xf jdk-7u51-linux-x64.gz -C /data/app
cd /data/app
ln -s jdk1.7.0_51 jdk1.7
cat >> /etc/profile << _PATH_
export JAVA_HOME=/data/app/jdk1.7
export CLASSPATH=.:\$JAVA_HOME/lib/dt.jar:\$JAVA_HOME/lib/tools.jar
export PATH=\$JAVA_HOME/bin:\$PATH
_PATH_
source /etc/profile
创建运行账户
useradd -u 600 run安装包
http://archive.cloudera.com/cdh5/cdh/5/
cd /data/install
wget -c http://archive.cloudera.com/cdh5/cdh/5/hadoop-2.6.0-cdh5.4.5.tar.gz
wget -c http://archive.apache.org/dist/zookeeper/zookeeper-3.4.5/zookeeper-3.4.5.tar.gz
wget -c http://archive.cloudera.com/cdh5/cdh/5/hbase-1.0.0-cdh5.4.5.tar.gz

安装 Zookeeper

cd /data/install
tar xf zookeeper-3.4.5.tar.gz -C /data/app
cd /data/app
ln -s zookeeper-3.4.5 zookeeper设置环境变量
sed -i '/^export PATH=/i\export ZOOKEEPER_HOME=/data/app/zookeeper' /etc/profile
sed -i 's#export PATH=#&\$ZOOKEEPER_HOME/bin:#' /etc/profile
source /etc/profile删除无用文件
cd $ZOOKEEPER_HOME
rm -rf *xml *txt zookeeper-3.4.5.jar.* src recipes docs dist-maven contrib
rm -f $ZOOKEEPER_HOME/bin/*.cmd $ZOOKEEPER_HOME/bin/*.txt
rm -f $ZOOKEEPER_HOME/conf/zoo_sample.cfg创建数据目录
mkdir -p /data/appData/zookeeper/{data,logs}配置
cat > $ZOOKEEPER_HOME/conf/zoo.cfg << _ZOO_
tickTime=2000
initLimit=10
syncLimit=5
clientPort=2181
dataDir=/data/appData/zookeeper/data
dataLogDir=/data/appData/zookeeper/logs
server.1=cdh-m1:2888:3888
server.2=cdh-m2:2888:3888
server.3=cdh-s1:2888:3888
_ZOO_修改Zookeeper的日志打印方式,与日志路径设置
编辑
$ZOOKEEPER_HOME/bin/zkEnv.sh在27行后加入两个变量
ZOO_LOG_DIR=/data/logs/zookeeper
ZOO_LOG4J_PROP="INFO,ROLLINGFILE"创建 myid文件
# 注意myid与配置文件保持一致
echo 1 >/data/appData/zookeeper/data/myid设置目录权限
chown -R run.run /data/{app,appData,logs}启动、停止
# 启动
runuser - run -c 'zkServer.sh start'
# 停止
runuser - run -c 'zkServer.sh stop'

安装 Hadoop

tar xf hadoop-2.6.0-cdh5.4.5.tar.gz -C /data/app
cd /data/app
ln -s hadoop-2.6.0-cdh5.4.5 hadoop设置环境变量
sed -i '/^export PATH=/i\export HADOOP_HOME=/data/app/hadoop' /etc/profile
sed -i 's#export PATH=#&\$HADOOP_HOME/bin:\$HADOOP_HOME/sbin:#' /etc/profile
source /etc/profile删除无用文件
cd $HADOOP_HOME
rm -rf *txt share/doc src examples* include bin-mapreduce1 cloudera
find . -name "*.cmd"|xargs rm -f新建数据目录
mkdir -p /data/appData/hdfs/{name,edits,data,jn,tmp}配置
切换到配置文件目录
cd $HADOOP_HOME/etc/hadoop编辑 core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- HDFS 集群名称,可指定端口 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hdfs-cdh</value>
</property>

<!-- 临时文件目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/data/appData/hdfs/tmp</value>
</property>

<!-- 回收站设置,0不启用回收站,1440 表示1440分钟后删除 -->
<property>
<name>fs.trash.interval</name>
<value>1440</value>
</property>

<!-- SequenceFiles在读写中可以使用的缓存大小,单位 bytes 默认 4096 -->
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>

<!-- 可用压缩算法,启用在hdfs-site.xml中,需要编译动态链接库才能用 -->
<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
</configuration>编辑 hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- 指定hdfs 集群名称,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>hdfs-cdh</value>
</property>

<!-- 指定 Zookeeper 用于NameNode HA,默认官方配置在core-site.xml中,为了查看清晰配置到hdfs-site.xml也是可用的 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>cdh-m1:2181,cdh-m2:2181,cdh-s1:2181</value>
</property>

<!-- hdfs-cdh 下有两个NameNode,分别为 nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.hdfs-cdh</name>
<value>nn1,nn2</value>
</property>

<!-- nn1 RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.hdfs-cdh.nn1</name>
<value>cdh-m1:9000</value>
</property>

<!-- nn1 HTTP通信地址 -->
<property>
<name>dfs.namenode.http-address.hdfs-cdh.nn1</name>
<value>cdh-m1:50070</value>
</property>

<!-- nn2 RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.hdfs-cdh.nn2</name>
<value>cdh-m2:9000</value>
</property>

<!-- nn2 HTTP通信地址 -->
<property>
<name>dfs.namenode.http-address.hdfs-cdh.nn2</name>
<value>cdh-m2:50070</value>
</property>

<!-- 指定NameNode元数据在JournalNode上的存储路径 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://cdh-m1:8485;cdh-m2:8485;cdh-s1:8485;/hdfs-cdh</value>
</property>

<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>

<!-- 配置主备切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.hdfs-cdh</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>

<!-- 配置主备切换方法,每个方法一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>

<!-- 指定运行用户的秘钥,需要NameNode双向免密码登录,用于主备自动切换 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/run/.ssh/id_rsa</value>
</property>

<!-- 配置sshfence 超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>50000</value>
</property>

<!-- NameNode 数据本地存储路径 -->
<property>
<name>dfs.namenode.name.dir</name>
<value>/data/appData/hdfs/name</value>
</property>

<!-- DataNode 数据本地存储路径 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>/data/appData/hdfs/data</value>
</property>

<!-- JournalNode 数据本地存储路径 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/data/appData/hdfs/jn</value>
</property>

<!-- 修改文件存储到edits,定期同步到DataNode -->
<property>
<name>dfs.namenode.edits.noeditlogchannelflush</name>
<value>true</value>
</property>

<!-- edits 数据本地存储路径 -->
<property>
<name>dfs.namenode.edits.dir</name>
<value>/data/appData/hdfs/edits</value>
</property>

<!-- 开启Block Location metadata允许impala知道数据块在哪块磁盘上 默认关闭 -->
<property>
<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
<value>true</value>
</property>

<!-- 权限检查 默认开启 -->
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>

<!-- block 大小设置 -->
<property>
<name>dfs.blocksize</name>
<value>64m</value>
</property>
</configuration>小于5个DataNode建议添加如下配置
<!-- 数据副本数量,不能超过DataNode数量,大集群建议使用默认值 默认 3 -->
<property>
<name>dfs.replication</name>
<value>2</value>
</property>

<!-- 当副本写入失败时不分配新节点,小集群适用 -->
<property>
<name>dfs.client.block.write.replace-datanode-on-failure.policy</name>
<value>NEVER</value>
</property>在 hadoop-env.sh 中添加如下变量
export JAVA_HOME=/data/app/jdk1.7
export HADOOP_LOG_DIR=/data/logs/hadoop
export HADOOP_PID_DIR=/data/pid
# SSH端口 可选
export HADOOP_SSH_OPTS="-p 36000"Heap 设置,单位 MB
export HADOOP_HEAPSIZE=1024权限设置
chown -R run.run /data/{app,appData,logs}
chmod 777 /data/pid格式化
格式化只需要执行一次,格式化之前启动Zookeeper
 
切换用户
su - run启动所有 JournalNode
hadoop-daemon.sh start journalnode格式化 Zookeeper(为 ZKFC 创建znode)
hdfs zkfc -formatZKNameNode 主节点格式化并启动
hdfs namenode -format
hadoop-daemon.sh start namenodeNameNode 备节点同步数据并启动
hdfs namenode -bootstrapStandby
hadoop-daemon.sh start namenode启动 ZKFC
hadoop-daemon.sh start zkfc启动 DataNode
hadoop-daemon.sh start datanode启动与停止
切换用户
su - run集群批量启动
需要配置运行用户ssh-key免密码登录,与$HADOOP_HOME/etc/hadoop/slaves
# 启动
start-dfs.sh
# 停止
stop-dfs.sh单服务启动停止
启动HDFS
hadoop-daemon.sh start journalnode
hadoop-daemon.sh start namenode
hadoop-daemon.sh start zkfc
hadoop-daemon.sh start datanode停止HDFS
hadoop-daemon.sh stop datanode
hadoop-daemon.sh stop namenode
hadoop-daemon.sh stop journalnode
hadoop-daemon.sh stop zkfc
测试
HDFS HA 测试
打开 NameNode 状态页:
http://cdh-m1:50010
http://cdh-m2:50010 

在 Overview 后面能看见 active 或 standby,active 为当前 Master,停止 active 上的 NameNode,检查 standby是否为 active。
 
HDFS 测试
hadoop fs -mkdir /test
hadoop fs -put /etc/hosts /test
hadoop fs -ls /test结果:
-rw-r--r-- 2 java supergroup 89 2016-06-15 10:30 /test/hosts
# 其中权限后面的列(这里的2)代表文件总数,即副本数量。HDFS 管理命令
# 动态加载 hdfs-site.xml
hadoop dfsadmin -refreshNodes

HBase安装配置

cd /data/install
tar xf hbase-1.0.0-cdh5.4.5.tar.gz -C /data/app
cd /data/app
ln -s hbase-1.0.0-cdh5.4.5 hbase设置环境变量
sed -i '/^export PATH=/i\export HBASE_HOME=/data/app/hbase' /etc/profile
sed -i 's#export PATH=#&\$HBASE_HOME/bin:#' /etc/profile
source /etc/profile删除无用文件
cd $HBASE_HOME
rm -rf *.txt pom.xml src docs cloudera dev-support hbase-annotations hbase-assembly hbase-checkstyle hbase-client hbase-common hbase-examples hbase-hadoop2-compat hbase-hadoop-compat hbase-it hbase-prefix-tree hbase-protocol hbase-rest hbase-server hbase-shell hbase-testing-util hbase-thrift
find . -name "*.cmd"|xargs rm -f配置
进入配置文件目录
cd $HBASE_HOME/conf编辑 hbase-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- HBase 数据存储路径 -->
<property>
<name>hbase.rootdir</name>
<value>hdfs://hdfs-cdh/hbase</value>
</property>

<!-- 完全分布式模式 -->
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>

<!-- HMaster 节点 -->
<property>
<name>hbase.master</name>
<value>cdh-m1:60000,cdh-m2:60000</value>
</property>

<!-- Zookeeper 节点 -->
<property>
<name>hbase.zookeeper.quorum</name>
<value>cdh-m1:2181,cdh-m2:2181,cdh-s1:2181</value>
</property>

<!-- znode 路径,Zookeeper集群中有多个HBase集群需要设置不同znode -->
<property>
<name>zookeeper.znode.parent</name>
<value>/hbase</value>
</property>

<!-- HBase 协处理器 -->
<property>
<name>hbase.coprocessor.user.region.classes</name>
<value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value>
</property>
</configuration>在 hbase-env.sh 中添加如下变量
export JAVA_HOME=/data/app/jdk1.7
export HBASE_LOG_DIR=/data/logs/hbase
export HBASE_PID_DIR=/data/pid
export HBASE_MANAGES_ZK=false
# SSH 默认端口 可选
export HBASE_SSH_OPTS="-o ConnectTimeout=1 -p 36000"Heap 设置,单位 MB
export HBASE_HEAPSIZE=1024可选设置 regionservers 中添加所有RegionServer主机名,用于集群批量启动、停止
 
启动与停止
切换用户
su - run集群批量启动
需要配置运行用户ssh-key免密码登录,与$HBASE_HOME/conf/regionservers
# 启动
start-hbase.sh
# 停止
stop-hbase.sh单服务启动停止
HMaster
# 启动
hbase-daemon.sh start master
# 停止
hbase-daemon.sh stop masterHRegionServer
# 启动
hbase-daemon.sh start regionserver
# 停止
hbase-daemon.sh stop regionserver
测试
HBase HA 测试
浏览器打开两个HMaster状态页:
http://cdh-m1:60010
http://cdh-m2:60010 

可以在Master后面看见其中一个主机名,Backup Masters中看见另一个。
停止当前Master,刷新另一个HMaster状态页会发现Master后面已经切换,HA成功。
 
HBase 测试
进入hbase shell 执行:
create 'users','user_id','address','info'
list
put 'users','anton','info:age','24'
get 'users','anton'

# 最终结果
COLUMN CELL
info:age timestamp=1465972035945, value=24
1 row(s) in 0.0170 seconds清除测试数据:
disable 'users'
drop 'users'到这里安装就全部完成,不懂的地方可以留言交流! 查看全部
hadoop.jpg

CDH 的部署和 Apache Hadoop 的部署是没有任何区别的。这里着重的是 HA的部署,需要特殊说明的是NameNode HA 需要依赖 Zookeeper
 


准备


Hosts文件配置:
cat > /etc/hosts << _HOSTS_
127.0.0.1 localhost
10.0.2.59 cdh-m1
10.0.2.60 cdh-m2
10.0.2.61 cdh-s1
_HOSTS_
各个节点服务情况
cdh-m1 Zookeeper JournalNode NameNode DFSZKFailoverController HMaster
cdh-m2 Zookeeper JournalNode NameNode DFSZKFailoverController HMaster
cdh-s1 Zookeeper JournalNode DataNode HRegionServer
对几个新服务说明下: 
  • JournalNode 用于同步 NameNode 元数据,和 Zookeeper 一样需要 2N+1个节点存活集群才可用。
  • DFSZKFailoverController(ZKFC) 用于主备切换,类似 Keepalived 所扮演的角色。

 
NTP 服务
设置时区
rm -f /etc/localtime
ln -s /usr/share/zoneinfo/UTC /etc/localtime
配置NTP Server
yum install -y ntp
cat > /etc/ntp.conf << _NTP_
driftfile /var/lib/ntp/drift

restrict default nomodify
restrict -6 default nomodify

server cn.ntp.org.cn prefer
server news.neu.edu.cn iburst
server dns.sjtu.edu.cn iburst
server 127.127.1.1 iburst

tinker dispersion 100
tinker step 1800
tinker stepout 3600
includefile /etc/ntp/crypto/pw

keys /etc/ntp/keys
_NTP_

# NTP启动时立即同步
cat >> /etc/ntp/step-tickers << _NTP_
server cn.ntp.org.cn prefer
server news.neu.edu.cn iburst
server dns.sjtu.edu.cn iburst
_NTP_

# 同步硬件时钟
cat >> /etc/sysconfig/ntpd << _NTPHW_
SYNC_HWCLOCK=yes
_NTPHW_
启动并设置开机自启动
/etc/init.d/ntpd start
chkconfig ntpd on
配置 NTP Client
yum install -y ntp
# 注意修改内网NTP Server地址
cat > /etc/ntp.conf << _NTP_
driftfile /var/lib/ntp/drift

restrict default nomodify
restrict -6 default nomodify

restrict 127.0.0.1
restrict -6 ::1

server 10.0.2.59 prefer

tinker dispersion 100
tinker step 1800
tinker stepout 3600
includefile /etc/ntp/crypto/pw

keys /etc/ntp/keys
_NTP_

# NTP启动时立即同步
cat >> /etc/ntp/step-tickers << _NTP_
server 10.0.2.59 prefer
_NTP_

# 同步硬件时钟
cat >> /etc/sysconfig/ntpd << _NTPHW_
SYNC_HWCLOCK=yes
_NTPHW_
启动并设置开机自启动
/etc/init.d/ntpd start
chkconfig ntpd on
检查 NTP 同步
ntpq -p

# 结果
remote refid st t when poll reach delay offset jitter
==============================================================================
*time7.aliyun.co 10.137.38.86 2 u 17 64 3 44.995 5.178 0.177
news.neu.edu.cn .INIT. 16 u - 64 0 0.000 0.000 0.000
202.120.2.90 .INIT. 16 u - 64 0 0.000 0.000 0.000
JDK
创建目录
mkdir -p /data/{install,app,logs,pid,appData}
mkdir /data/appData/tmp
cd /data/install
wget -c http://oracle.com/jdk-7u51-linux-x64.gz
tar xf jdk-7u51-linux-x64.gz -C /data/app
cd /data/app
ln -s jdk1.7.0_51 jdk1.7
cat >> /etc/profile << _PATH_
export JAVA_HOME=/data/app/jdk1.7
export CLASSPATH=.:\$JAVA_HOME/lib/dt.jar:\$JAVA_HOME/lib/tools.jar
export PATH=\$JAVA_HOME/bin:\$PATH
_PATH_
source /etc/profile

创建运行账户
useradd -u 600 run
安装包
http://archive.cloudera.com/cdh5/cdh/5/
cd /data/install
wget -c http://archive.cloudera.com/cdh5/cdh/5/hadoop-2.6.0-cdh5.4.5.tar.gz
wget -c http://archive.apache.org/dist/zookeeper/zookeeper-3.4.5/zookeeper-3.4.5.tar.gz
wget -c http://archive.cloudera.com/cdh5/cdh/5/hbase-1.0.0-cdh5.4.5.tar.gz


安装 Zookeeper


cd /data/install
tar xf zookeeper-3.4.5.tar.gz -C /data/app
cd /data/app
ln -s zookeeper-3.4.5 zookeeper
设置环境变量
sed -i '/^export PATH=/i\export ZOOKEEPER_HOME=/data/app/zookeeper' /etc/profile
sed -i 's#export PATH=#&\$ZOOKEEPER_HOME/bin:#' /etc/profile
source /etc/profile
删除无用文件
cd $ZOOKEEPER_HOME
rm -rf *xml *txt zookeeper-3.4.5.jar.* src recipes docs dist-maven contrib
rm -f $ZOOKEEPER_HOME/bin/*.cmd $ZOOKEEPER_HOME/bin/*.txt
rm -f $ZOOKEEPER_HOME/conf/zoo_sample.cfg
创建数据目录
mkdir -p /data/appData/zookeeper/{data,logs}
配置
cat > $ZOOKEEPER_HOME/conf/zoo.cfg << _ZOO_
tickTime=2000
initLimit=10
syncLimit=5
clientPort=2181
dataDir=/data/appData/zookeeper/data
dataLogDir=/data/appData/zookeeper/logs
server.1=cdh-m1:2888:3888
server.2=cdh-m2:2888:3888
server.3=cdh-s1:2888:3888
_ZOO_
修改Zookeeper的日志打印方式,与日志路径设置
编辑
$ZOOKEEPER_HOME/bin/zkEnv.sh
在27行后加入两个变量
ZOO_LOG_DIR=/data/logs/zookeeper
ZOO_LOG4J_PROP="INFO,ROLLINGFILE"
创建 myid文件
# 注意myid与配置文件保持一致
echo 1 >/data/appData/zookeeper/data/myid
设置目录权限
chown -R run.run /data/{app,appData,logs}
启动、停止
# 启动
runuser - run -c 'zkServer.sh start'
# 停止
runuser - run -c 'zkServer.sh stop'


安装 Hadoop


tar xf hadoop-2.6.0-cdh5.4.5.tar.gz -C /data/app
cd /data/app
ln -s hadoop-2.6.0-cdh5.4.5 hadoop
设置环境变量
sed -i '/^export PATH=/i\export HADOOP_HOME=/data/app/hadoop' /etc/profile
sed -i 's#export PATH=#&\$HADOOP_HOME/bin:\$HADOOP_HOME/sbin:#' /etc/profile
source /etc/profile
删除无用文件
cd $HADOOP_HOME
rm -rf *txt share/doc src examples* include bin-mapreduce1 cloudera
find . -name "*.cmd"|xargs rm -f
新建数据目录
mkdir -p /data/appData/hdfs/{name,edits,data,jn,tmp}
配置
切换到配置文件目录
cd $HADOOP_HOME/etc/hadoop
编辑 core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- HDFS 集群名称,可指定端口 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hdfs-cdh</value>
</property>

<!-- 临时文件目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/data/appData/hdfs/tmp</value>
</property>

<!-- 回收站设置,0不启用回收站,1440 表示1440分钟后删除 -->
<property>
<name>fs.trash.interval</name>
<value>1440</value>
</property>

<!-- SequenceFiles在读写中可以使用的缓存大小,单位 bytes 默认 4096 -->
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>

<!-- 可用压缩算法,启用在hdfs-site.xml中,需要编译动态链接库才能用 -->
<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
</configuration>
编辑 hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- 指定hdfs 集群名称,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>hdfs-cdh</value>
</property>

<!-- 指定 Zookeeper 用于NameNode HA,默认官方配置在core-site.xml中,为了查看清晰配置到hdfs-site.xml也是可用的 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>cdh-m1:2181,cdh-m2:2181,cdh-s1:2181</value>
</property>

<!-- hdfs-cdh 下有两个NameNode,分别为 nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.hdfs-cdh</name>
<value>nn1,nn2</value>
</property>

<!-- nn1 RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.hdfs-cdh.nn1</name>
<value>cdh-m1:9000</value>
</property>

<!-- nn1 HTTP通信地址 -->
<property>
<name>dfs.namenode.http-address.hdfs-cdh.nn1</name>
<value>cdh-m1:50070</value>
</property>

<!-- nn2 RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.hdfs-cdh.nn2</name>
<value>cdh-m2:9000</value>
</property>

<!-- nn2 HTTP通信地址 -->
<property>
<name>dfs.namenode.http-address.hdfs-cdh.nn2</name>
<value>cdh-m2:50070</value>
</property>

<!-- 指定NameNode元数据在JournalNode上的存储路径 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://cdh-m1:8485;cdh-m2:8485;cdh-s1:8485;/hdfs-cdh</value>
</property>

<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>

<!-- 配置主备切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.hdfs-cdh</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>

<!-- 配置主备切换方法,每个方法一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>

<!-- 指定运行用户的秘钥,需要NameNode双向免密码登录,用于主备自动切换 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/run/.ssh/id_rsa</value>
</property>

<!-- 配置sshfence 超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>50000</value>
</property>

<!-- NameNode 数据本地存储路径 -->
<property>
<name>dfs.namenode.name.dir</name>
<value>/data/appData/hdfs/name</value>
</property>

<!-- DataNode 数据本地存储路径 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>/data/appData/hdfs/data</value>
</property>

<!-- JournalNode 数据本地存储路径 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/data/appData/hdfs/jn</value>
</property>

<!-- 修改文件存储到edits,定期同步到DataNode -->
<property>
<name>dfs.namenode.edits.noeditlogchannelflush</name>
<value>true</value>
</property>

<!-- edits 数据本地存储路径 -->
<property>
<name>dfs.namenode.edits.dir</name>
<value>/data/appData/hdfs/edits</value>
</property>

<!-- 开启Block Location metadata允许impala知道数据块在哪块磁盘上 默认关闭 -->
<property>
<name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
<value>true</value>
</property>

<!-- 权限检查 默认开启 -->
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>

<!-- block 大小设置 -->
<property>
<name>dfs.blocksize</name>
<value>64m</value>
</property>
</configuration>
小于5个DataNode建议添加如下配置
<!-- 数据副本数量,不能超过DataNode数量,大集群建议使用默认值 默认 3 -->
<property>
<name>dfs.replication</name>
<value>2</value>
</property>

<!-- 当副本写入失败时不分配新节点,小集群适用 -->
<property>
<name>dfs.client.block.write.replace-datanode-on-failure.policy</name>
<value>NEVER</value>
</property>
在 hadoop-env.sh 中添加如下变量
export JAVA_HOME=/data/app/jdk1.7
export HADOOP_LOG_DIR=/data/logs/hadoop
export HADOOP_PID_DIR=/data/pid
# SSH端口 可选
export HADOOP_SSH_OPTS="-p 36000"
Heap 设置,单位 MB
export HADOOP_HEAPSIZE=1024
权限设置
chown -R run.run /data/{app,appData,logs}
chmod 777 /data/pid
格式化
格式化只需要执行一次,格式化之前启动Zookeeper
 
切换用户
su - run
启动所有 JournalNode
hadoop-daemon.sh start journalnode
格式化 Zookeeper(为 ZKFC 创建znode)
hdfs zkfc -formatZK
NameNode 主节点格式化并启动
hdfs namenode -format
hadoop-daemon.sh start namenode
NameNode 备节点同步数据并启动
hdfs namenode -bootstrapStandby
hadoop-daemon.sh start namenode
启动 ZKFC
hadoop-daemon.sh start zkfc
启动 DataNode
hadoop-daemon.sh start datanode
启动与停止
切换用户
su - run
集群批量启动
需要配置运行用户ssh-key免密码登录,与$HADOOP_HOME/etc/hadoop/slaves
# 启动
start-dfs.sh
# 停止
stop-dfs.sh
单服务启动停止
启动HDFS
hadoop-daemon.sh start journalnode
hadoop-daemon.sh start namenode
hadoop-daemon.sh start zkfc
hadoop-daemon.sh start datanode
停止HDFS
hadoop-daemon.sh stop datanode
hadoop-daemon.sh stop namenode
hadoop-daemon.sh stop journalnode
hadoop-daemon.sh stop zkfc

测试
HDFS HA 测试
打开 NameNode 状态页:
http://cdh-m1:50010
http://cdh-m2:50010 

在 Overview 后面能看见 active 或 standby,active 为当前 Master,停止 active 上的 NameNode,检查 standby是否为 active。
 
HDFS 测试
hadoop fs -mkdir /test
hadoop fs -put /etc/hosts /test
hadoop fs -ls /test
结果:
-rw-r--r--   2 java supergroup         89 2016-06-15 10:30 /test/hosts
# 其中权限后面的列(这里的2)代表文件总数,即副本数量。
HDFS 管理命令
# 动态加载 hdfs-site.xml
hadoop dfsadmin -refreshNodes


HBase安装配置


cd /data/install
tar xf hbase-1.0.0-cdh5.4.5.tar.gz -C /data/app
cd /data/app
ln -s hbase-1.0.0-cdh5.4.5 hbase
设置环境变量
sed -i '/^export PATH=/i\export HBASE_HOME=/data/app/hbase' /etc/profile
sed -i 's#export PATH=#&\$HBASE_HOME/bin:#' /etc/profile
source /etc/profile
删除无用文件
cd $HBASE_HOME
rm -rf *.txt pom.xml src docs cloudera dev-support hbase-annotations hbase-assembly hbase-checkstyle hbase-client hbase-common hbase-examples hbase-hadoop2-compat hbase-hadoop-compat hbase-it hbase-prefix-tree hbase-protocol hbase-rest hbase-server hbase-shell hbase-testing-util hbase-thrift
find . -name "*.cmd"|xargs rm -f
配置
进入配置文件目录
cd $HBASE_HOME/conf
编辑 hbase-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- HBase 数据存储路径 -->
<property>
<name>hbase.rootdir</name>
<value>hdfs://hdfs-cdh/hbase</value>
</property>

<!-- 完全分布式模式 -->
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>

<!-- HMaster 节点 -->
<property>
<name>hbase.master</name>
<value>cdh-m1:60000,cdh-m2:60000</value>
</property>

<!-- Zookeeper 节点 -->
<property>
<name>hbase.zookeeper.quorum</name>
<value>cdh-m1:2181,cdh-m2:2181,cdh-s1:2181</value>
</property>

<!-- znode 路径,Zookeeper集群中有多个HBase集群需要设置不同znode -->
<property>
<name>zookeeper.znode.parent</name>
<value>/hbase</value>
</property>

<!-- HBase 协处理器 -->
<property>
<name>hbase.coprocessor.user.region.classes</name>
<value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value>
</property>
</configuration>
在 hbase-env.sh 中添加如下变量
export JAVA_HOME=/data/app/jdk1.7
export HBASE_LOG_DIR=/data/logs/hbase
export HBASE_PID_DIR=/data/pid
export HBASE_MANAGES_ZK=false
# SSH 默认端口 可选
export HBASE_SSH_OPTS="-o ConnectTimeout=1 -p 36000"
Heap 设置,单位 MB
export HBASE_HEAPSIZE=1024
可选设置 regionservers 中添加所有RegionServer主机名,用于集群批量启动、停止
 
启动与停止
切换用户
su - run
集群批量启动
需要配置运行用户ssh-key免密码登录,与$HBASE_HOME/conf/regionservers
# 启动
start-hbase.sh
# 停止
stop-hbase.sh
单服务启动停止
HMaster
# 启动
hbase-daemon.sh start master
# 停止
hbase-daemon.sh stop master
HRegionServer
# 启动
hbase-daemon.sh start regionserver
# 停止
hbase-daemon.sh stop regionserver

测试
HBase HA 测试
浏览器打开两个HMaster状态页:
http://cdh-m1:60010
http://cdh-m2:60010 

可以在Master后面看见其中一个主机名,Backup Masters中看见另一个。
停止当前Master,刷新另一个HMaster状态页会发现Master后面已经切换,HA成功。
 
HBase 测试
进入hbase shell 执行:
create 'users','user_id','address','info'
list
put 'users','anton','info:age','24'
get 'users','anton'

# 最终结果
COLUMN CELL
info:age timestamp=1465972035945, value=24
1 row(s) in 0.0170 seconds
清除测试数据:
disable 'users'
drop 'users'
到这里安装就全部完成,不懂的地方可以留言交流!

Elasticsearch Recovery详解

OpenSkill 发表了文章 • 0 个评论 • 1015 次浏览 • 2016-09-08 23:56 • 来自相关话题

基础知识点

在Eleasticsearch中recovery指的就是一个索引的分片分配到另外一个节点的过程;一般在快照恢复、索引副本数变更、节点故障、节点重启时发生。由于master保存整个集群的状态信息,因此可以判断出哪些shard需要做再分配,以及分配到哪个结点,例如:
如果某个shard主分片在,副分片所在结点挂了,那么选择另外一个可用结点,将副分片分配(allocate)上去,然后进行主从分片的复制。如果某个shard的主分片所在结点挂了,副分片还在,那么将副分片升级为主分片,然后做主从分片复制。如果某个shard的主副分片所在结点都挂了,则暂时无法恢复,等待持有相关数据的结点重新加入集群后,从该结点上恢复主分片,再选择另外的结点复制副分片。
 
正常情况下,我们可以通过ES的health的API接口,查看整个集群的健康状态和整个集群数据的完整性:




状态及含义如下:
green: 所有的shard主副分片都是正常的;yellow: 所有shard的主分片都完好,部分副分片没有或者不完整,数据完整性依然完好;red: 某些shard的主副分片都没有了,对应的索引数据不完整。
 
recovery过程要消耗额外的资源,CPU、内存、结点之间的网络带宽等等。 这些额外的资源消耗,有可能会导致集群的服务性能下降,或者一部分功能暂时不可用。了解一些recovery的过程和相关的配置参数,对于减小recovery带来的资源消耗,加快集群恢复过程都是很有帮助的。
 

减少集群Full Restart造成的数据来回拷贝

ES集群可能会有整体重启的情况,比如需要升级硬件、升级操作系统或者升级ES大版本。重启所有结点可能带来的一个问题: 某些结点可能先于其他结点加入集群, 先加入集群的结点可能已经可以选举好master,并立即启动了recovery的过程,由于这个时候整个集群数据还不完整,master会指示一些结点之间相互开始复制数据。 那些晚到的结点,一旦发现本地的数据已经被复制到其他结点,则直接删除掉本地“失效”的数据。 当整个集群恢复完毕后,数据分布不均衡,显然是不均衡的,master会触发rebalance过程,将数据在节点之间挪动。整个过程无谓消耗了大量的网络流量;合理设置recovery相关参数则可以防范这种问题的发生。gateway.expected_nodes
gateway.expected_master_nodes
gateway.expected_data_nodes以上三个参数是说集群里一旦有多少个节点就立即开始recovery过程。 不同之处在于,第一个参数指的是master或者data都算在内,而后面两个参数则分指master和data node。
 
在期待的节点数条件满足之前, recovery过程会等待gateway.recover_after_time (默认5分钟) 这么长时间,一旦等待超时,则会根据以下条件判断是否启动:gateway.recover_after_nodes
gateway.recover_after_master_nodes
gateway.recover_after_data_nodes
 
举例来说,对于一个有10个data node的集群,如果有以下的设置:gateway.expected_data_nodes: 10
gateway.recover_after_time: 5m
gateway.recover_after_data_nodes: 8那么集群5分钟以内10个data node都加入了,或者5分钟以后8个以上的data node加入了,都会立即启动recovery过程。
 

减少主副本之间的数据复制

如果不是full restart,而是重启单个data node,仍然会造成数据在不同结点之间来回复制。为避免这个问题,可以在重启之前,先关闭集群的shard allocation:




然后在节点重启完成加入集群后,再重新打开:




这样在节点重启完成后,尽量多的从本地直接恢复数据。

但是在ES1.6版本之前,即使做了以上措施,仍然会发现有大量主副本之间的数据拷贝。从表面去看,这点很让人不能理解。 主副本数据完全一致,ES应该直接从副本本地恢复数据就好了,为什么要重新从主片再复制一遍呢? 原因在于recovery是简单对比主副本的segment file来判断哪些数据一致可以本地恢复,哪些不一致需要远端拷贝的。而不同节点的segment merge是完全独立运行的,可能导致主副本merge的深度不完全一样,从而造成即使文档集完全一样,产生的segment file却不完全一样。
 
为了解决这个问题,ES1.6版本以后加入了synced flush的新特性。 对于5分钟没有更新过的shard,会自动synced flush一下,实质是为对应的shard加了一个synced flush ID。这样当重启节点的时候,先对比一下shard的synced flush ID,就可以知道两个shard是否完全相同,避免了不必要的segment file拷贝,极大加快了冷索引的恢复速度。
 
需要注意的是synced flush只对冷索引有效,对于热索引(5分钟内有更新的索引)没有作用。 如果重启的结点包含有热索引,那么还是免不了大量的文件拷贝。因此在重启一个结点之前,最好按照以下步骤执行,recovery几乎可以瞬间完成:
暂停数据写入程序关闭集群shard allocation手动执行POST /_flush/synced重启节点重新开启集群shard allocation 等待recovery完成,集群health status变成green重新开启数据写入程序
 

特大热索引为何恢复慢

对于冷索引,由于数据不再更新,利用synced flush特性,可以快速直接从本地恢复数据。 而对于热索引,特别是shard很大的热索引,除了synced flush派不上用场需要大量跨节点拷贝segment file以外,translog recovery是导致慢的更重要的原因。
 
从主片恢复数据到副片需要经历3个阶段:
对主片上的segment file做一个快照,然后拷贝到复制片分配到的结点。数据拷贝期间,不会阻塞索引请求,新增索引操作记录到translog里。对translog做一个快照,此快照包含第一阶段新增的索引请求,然后重放快照里的索引操作。此阶段仍然不阻塞索引请求,新增索引操作记录到translog里。为了能达到主副片完全同步,阻塞掉新索引请求,然后重放阶段二新增的translog操作。
 
可见,在recovery完成之前,translog是不能够被清除掉的(禁用掉正常运作期间后台的flush操作)。如果shard比较大,第一阶段耗时很长,会导致此阶段产生的translog很大。重放translog比起简单的文件拷贝耗时要长得多,因此第二阶段的translog耗时也会显著增加。等到第三阶段,需要重放的translog可能会比第二阶段还要多。 而第三阶段是会阻塞新索引写入的,在对写入实时性要求很高的场合,就会非常影响用户体验。 因此,要加快大的热索引恢复速度,最好的方式是遵从上一节提到的方法: 暂停新数据写入,手动sync flush,等待数据恢复完成后,重新开启数据写入,这样可以将数据延迟影响可以降到最低。
 
万一遇到Recovery慢,想知道进度怎么办呢? CAT Recovery API可以显示详细的recovery各个阶段的状态。 这个API怎么用就不在这里赘述了,参考: CAT Recovery。
 

其他Recovery相关的专家级设置

还有其他一些专家级的设置(参见: recovery)可以影响recovery的速度,但提升速度的代价是更多的资源消耗,因此在生产集群上调整这些参数需要结合实际情况谨慎调整,一旦影响应用要立即调整回来。 对于搜索并发量要求高,延迟要求低的场合,默认设置一般就不要去动了。 对于日志实时分析类对于搜索延迟要求不高,但对于数据写入延迟期望比较低的场合,可以适当调大indices.recovery.max_bytes_per_sec,提升recovery速度,减少数据写入被阻塞的时长。
 
最后要说的一点是ES的版本迭代很快,对于Recovery的机制也在不断的优化中。 其中有一些版本甚至引入了一些bug,比如在ES1.4.x有严重的translog recovery bug,导致大的索引trans log recovery几乎无法完成 (issue #9226)  。因此实际使用中如果遇到问题,最好在Github的issue list里搜索一下,看是否使用的版本有其他人反映同样的问题。
分享阅读原文:http://elasticsearch.cn/article/38 查看全部


基础知识点


在Eleasticsearch中recovery指的就是一个索引的分片分配到另外一个节点的过程;一般在快照恢复、索引副本数变更、节点故障、节点重启时发生。由于master保存整个集群的状态信息,因此可以判断出哪些shard需要做再分配,以及分配到哪个结点,例如:
  1. 如果某个shard主分片在,副分片所在结点挂了,那么选择另外一个可用结点,将副分片分配(allocate)上去,然后进行主从分片的复制。
  2. 如果某个shard的主分片所在结点挂了,副分片还在,那么将副分片升级为主分片,然后做主从分片复制。
  3. 如果某个shard的主副分片所在结点都挂了,则暂时无法恢复,等待持有相关数据的结点重新加入集群后,从该结点上恢复主分片,再选择另外的结点复制副分片。

 
正常情况下,我们可以通过ES的health的API接口,查看整个集群的健康状态和整个集群数据的完整性:
EsHealth.png

状态及含义如下:
  • green: 所有的shard主副分片都是正常的;
  • yellow: 所有shard的主分片都完好,部分副分片没有或者不完整,数据完整性依然完好;
  • red: 某些shard的主副分片都没有了,对应的索引数据不完整。

 
recovery过程要消耗额外的资源,CPU、内存、结点之间的网络带宽等等。 这些额外的资源消耗,有可能会导致集群的服务性能下降,或者一部分功能暂时不可用。了解一些recovery的过程和相关的配置参数,对于减小recovery带来的资源消耗,加快集群恢复过程都是很有帮助的。
 


减少集群Full Restart造成的数据来回拷贝


ES集群可能会有整体重启的情况,比如需要升级硬件、升级操作系统或者升级ES大版本。重启所有结点可能带来的一个问题: 某些结点可能先于其他结点加入集群, 先加入集群的结点可能已经可以选举好master,并立即启动了recovery的过程,由于这个时候整个集群数据还不完整,master会指示一些结点之间相互开始复制数据。 那些晚到的结点,一旦发现本地的数据已经被复制到其他结点,则直接删除掉本地“失效”的数据。 当整个集群恢复完毕后,数据分布不均衡,显然是不均衡的,master会触发rebalance过程,将数据在节点之间挪动。整个过程无谓消耗了大量的网络流量;合理设置recovery相关参数则可以防范这种问题的发生。
gateway.expected_nodes
gateway.expected_master_nodes
gateway.expected_data_nodes
以上三个参数是说集群里一旦有多少个节点就立即开始recovery过程。 不同之处在于,第一个参数指的是master或者data都算在内,而后面两个参数则分指master和data node。
 
在期待的节点数条件满足之前, recovery过程会等待gateway.recover_after_time (默认5分钟) 这么长时间,一旦等待超时,则会根据以下条件判断是否启动:
gateway.recover_after_nodes
gateway.recover_after_master_nodes
gateway.recover_after_data_nodes
 
举例来说,对于一个有10个data node的集群,如果有以下的设置:
gateway.expected_data_nodes: 10
gateway.recover_after_time: 5m
gateway.recover_after_data_nodes: 8
那么集群5分钟以内10个data node都加入了,或者5分钟以后8个以上的data node加入了,都会立即启动recovery过程。
 


减少主副本之间的数据复制


如果不是full restart,而是重启单个data node,仍然会造成数据在不同结点之间来回复制。为避免这个问题,可以在重启之前,先关闭集群的shard allocation:
EsNone.png

然后在节点重启完成加入集群后,再重新打开:
EsAll.png

这样在节点重启完成后,尽量多的从本地直接恢复数据。

但是在ES1.6版本之前,即使做了以上措施,仍然会发现有大量主副本之间的数据拷贝。从表面去看,这点很让人不能理解。 主副本数据完全一致,ES应该直接从副本本地恢复数据就好了,为什么要重新从主片再复制一遍呢? 原因在于recovery是简单对比主副本的segment file来判断哪些数据一致可以本地恢复,哪些不一致需要远端拷贝的。而不同节点的segment merge是完全独立运行的,可能导致主副本merge的深度不完全一样,从而造成即使文档集完全一样,产生的segment file却不完全一样。
 
为了解决这个问题,ES1.6版本以后加入了synced flush的新特性。 对于5分钟没有更新过的shard,会自动synced flush一下,实质是为对应的shard加了一个synced flush ID。这样当重启节点的时候,先对比一下shard的synced flush ID,就可以知道两个shard是否完全相同,避免了不必要的segment file拷贝,极大加快了冷索引的恢复速度。
 
需要注意的是synced flush只对冷索引有效,对于热索引(5分钟内有更新的索引)没有作用。 如果重启的结点包含有热索引,那么还是免不了大量的文件拷贝。因此在重启一个结点之前,最好按照以下步骤执行,recovery几乎可以瞬间完成:
  1. 暂停数据写入程序
  2. 关闭集群shard allocation
  3. 手动执行POST /_flush/synced
  4. 重启节点
  5. 重新开启集群shard allocation 
  6. 等待recovery完成,集群health status变成green
  7. 重新开启数据写入程序

 


特大热索引为何恢复慢


对于冷索引,由于数据不再更新,利用synced flush特性,可以快速直接从本地恢复数据。 而对于热索引,特别是shard很大的热索引,除了synced flush派不上用场需要大量跨节点拷贝segment file以外,translog recovery是导致慢的更重要的原因。
 
从主片恢复数据到副片需要经历3个阶段:
  1. 对主片上的segment file做一个快照,然后拷贝到复制片分配到的结点。数据拷贝期间,不会阻塞索引请求,新增索引操作记录到translog里。
  2. 对translog做一个快照,此快照包含第一阶段新增的索引请求,然后重放快照里的索引操作。此阶段仍然不阻塞索引请求,新增索引操作记录到translog里。
  3. 为了能达到主副片完全同步,阻塞掉新索引请求,然后重放阶段二新增的translog操作。

 
可见,在recovery完成之前,translog是不能够被清除掉的(禁用掉正常运作期间后台的flush操作)。如果shard比较大,第一阶段耗时很长,会导致此阶段产生的translog很大。重放translog比起简单的文件拷贝耗时要长得多,因此第二阶段的translog耗时也会显著增加。等到第三阶段,需要重放的translog可能会比第二阶段还要多。 而第三阶段是会阻塞新索引写入的,在对写入实时性要求很高的场合,就会非常影响用户体验。 因此,要加快大的热索引恢复速度,最好的方式是遵从上一节提到的方法: 暂停新数据写入,手动sync flush,等待数据恢复完成后,重新开启数据写入,这样可以将数据延迟影响可以降到最低。
 
万一遇到Recovery慢,想知道进度怎么办呢? CAT Recovery API可以显示详细的recovery各个阶段的状态。 这个API怎么用就不在这里赘述了,参考: CAT Recovery
 


其他Recovery相关的专家级设置


还有其他一些专家级的设置(参见: recovery)可以影响recovery的速度,但提升速度的代价是更多的资源消耗,因此在生产集群上调整这些参数需要结合实际情况谨慎调整,一旦影响应用要立即调整回来。 对于搜索并发量要求高,延迟要求低的场合,默认设置一般就不要去动了。 对于日志实时分析类对于搜索延迟要求不高,但对于数据写入延迟期望比较低的场合,可以适当调大indices.recovery.max_bytes_per_sec,提升recovery速度,减少数据写入被阻塞的时长。
 
最后要说的一点是ES的版本迭代很快,对于Recovery的机制也在不断的优化中。 其中有一些版本甚至引入了一些bug,比如在ES1.4.x有严重的translog recovery bug,导致大的索引trans log recovery几乎无法完成 (issue #9226)  。因此实际使用中如果遇到问题,最好在Github的issue list里搜索一下,看是否使用的版本有其他人反映同样的问题。
分享阅读原文:http://elasticsearch.cn/article/38

强制清除Elasticsearch中已删除的文件

采菊篱下 发表了文章 • 0 个评论 • 1474 次浏览 • 2016-06-05 01:14 • 来自相关话题

 Elasticsearch是建立在Apache Lucene 基础上的实时分布式搜索引擎,Lucene为了提高搜索的实时性,采用不可再修改(immutable)方式将文档存储在一个个segment中。也就是说,一个segment在写入到存储系统之后,将不可以再修改。那么Lucene是如何从一个segment中删除一个被索引的文档呢?简单的讲,当用户发出命令删除一个被索引的文档#ABC时,该文档并不会被马上从相应的存储它的segment中删除掉,而是通过一个特殊的文件来标记该文档已被删除。当用户再次搜索到#ABC时,Elasticsearch在segment中仍能找到#ABC,但由于#ABC文档已经被标记为删除,所以Lucene会从发回给用户的搜索结果中剔除#ABC,所以给用户感觉的是#ABC已经被删除了。
 
 Elasticseach会有后台线程根据Lucene的合并规则定期进行segment merging 合并操作,一般不需要用户担心或者采取任何行动。被删除的文档在segment合并时,才会被真正删除掉。在此之前,它仍然会占用着JVM heap和操作系统的文件cache等资源。在某些情况下,我们需要强制Elasticsearch进行segment merging,已释放其占用的大量系统资源。
                       POST /{index}/_optimize?only_expunge_deletes=true&wait_for_completion=true
_optimize命令可强制进行segment合并,并删除所有标记为删除的文档。Segment merging要消耗CPU,以及大量的I/O资源,所以一定要在你的ElasticSearch集群处于维护窗口期间,并且有足够的I/O空间的(如:SSD)的条件下进行;否则很可能造成集群崩溃和数据丢失。
 
下图展示了我们在进行强制expunge时,所观察到的CPU和磁盘I/O的使用情况。该集群运行在微软的Azure云平台IaaS虚拟机上,所有的数据节点都采用 D13 虚拟机,数据存储在本地的SSD磁盘中。该集群是一个备份集群,为了保证合并顺利进行,在此期间暂停了所有对其进行的写操作,仅有少量的读操作。这里需要注意: expunge操作是一种不得已而为之的操作,即在Elasticsearch不能有效自动清除删除文件的情况下才执行该操作。同时建议在此操作期间,最好停止对集群的所有读/写操作,并暂停止shard的自动分配 (cluster.routing.allocation.enable= none),以防有节点被踢出后shard自动分配造成的数据丢失。








下面两个设置可以用于控制清除时的处理速度,其中给出值是默认值,可以根据需求进行调整,具体请参见Merge。此外, 还可以临时将所有索引的replica设置为0,这样只用针对Primary进行expunge,以减小I/O压力。
PUT /{index}/_settings
{
"settings": {
"index.merge.policy.expunge_deletes_allowed": "10",
"index.merge.policy.max_merge_at_once_explicit" : "30"
}
}参考资料:Lucene‘s Handling of Deleted Documents.
分享阅读:http://blog.csdn.net/quicknet/article/details/46421505 查看全部
 Elasticsearch是建立在Apache Lucene 基础上的实时分布式搜索引擎,Lucene为了提高搜索的实时性,采用不可再修改(immutable)方式将文档存储在一个个segment中。也就是说,一个segment在写入到存储系统之后,将不可以再修改。那么Lucene是如何从一个segment中删除一个被索引的文档呢?简单的讲,当用户发出命令删除一个被索引的文档#ABC时,该文档并不会被马上从相应的存储它的segment中删除掉,而是通过一个特殊的文件来标记该文档已被删除。当用户再次搜索到#ABC时,Elasticsearch在segment中仍能找到#ABC,但由于#ABC文档已经被标记为删除,所以Lucene会从发回给用户的搜索结果中剔除#ABC,所以给用户感觉的是#ABC已经被删除了。
 
 Elasticseach会有后台线程根据Lucene的合并规则定期进行segment merging 合并操作,一般不需要用户担心或者采取任何行动。被删除的文档在segment合并时,才会被真正删除掉。在此之前,它仍然会占用着JVM heap和操作系统的文件cache等资源。在某些情况下,我们需要强制Elasticsearch进行segment merging,已释放其占用的大量系统资源。
                       POST /{index}/_optimize?only_expunge_deletes=true&wait_for_completion=true
_optimize命令可强制进行segment合并,并删除所有标记为删除的文档。Segment merging要消耗CPU,以及大量的I/O资源,所以一定要在你的ElasticSearch集群处于维护窗口期间,并且有足够的I/O空间的(如:SSD)的条件下进行;否则很可能造成集群崩溃和数据丢失。
 
下图展示了我们在进行强制expunge时,所观察到的CPU和磁盘I/O的使用情况。该集群运行在微软的Azure云平台IaaS虚拟机上,所有的数据节点都采用 D13 虚拟机,数据存储在本地的SSD磁盘中。该集群是一个备份集群,为了保证合并顺利进行,在此期间暂停了所有对其进行的写操作,仅有少量的读操作。这里需要注意: expunge操作是一种不得已而为之的操作,即在Elasticsearch不能有效自动清除删除文件的情况下才执行该操作。同时建议在此操作期间,最好停止对集群的所有读/写操作,并暂停止shard的自动分配 (cluster.routing.allocation.enable= none),以防有节点被踢出后shard自动分配造成的数据丢失。
Cpu.png

sec.png

下面两个设置可以用于控制清除时的处理速度,其中给出值是默认值,可以根据需求进行调整,具体请参见Merge。此外, 还可以临时将所有索引的replica设置为0,这样只用针对Primary进行expunge,以减小I/O压力。
PUT /{index}/_settings
{
"settings": {
"index.merge.policy.expunge_deletes_allowed": "10",
"index.merge.policy.max_merge_at_once_explicit" : "30"
}
}
参考资料:Lucene‘s Handling of Deleted Documents.
分享阅读:http://blog.csdn.net/quicknet/article/details/46421505

怎么彻底删除kafka的topic,然后重建?

Ansible 回复了问题 • 3 人关注 • 3 个回复 • 6433 次浏览 • 2017-08-23 20:25 • 来自相关话题

怎么查看kafka的版本号

OpenSkill 回复了问题 • 2 人关注 • 1 个回复 • 4216 次浏览 • 2016-10-26 21:37 • 来自相关话题

Hbase/Hdfs删除节点

采菊篱下 发表了文章 • 0 个评论 • 3301 次浏览 • 2015-11-30 00:16 • 来自相关话题

线上有台服务器随时可能会挂掉,所以需要把在这个服务器上hbase的regionserver和hdfs的datanode节点移除。然后重新拿台新服务器部署接管。
 
之前在文章 http://openskill.cn/article/178 中讲到怎么新增一个hdfs的datanode,所以我先讲一下怎么添加一个hbase的regionserver,然后再讲怎么删除! 

添加hbase regionserver节点

添加步骤如下:
1、在hbase  master上修改regionservers文件# cd hbase_install_dir/conf
# echo "new_hbase_node_hostname" >> ./regionservers2、如果你hbase集群使用自身zk集群的话,还需要修改hbase-site.xml文件,反之不用操作!# cd hbase_install_dir/conf
# vim hbase-site.xml
找到hbase.zookeeper.quorum属性 -->加入新节点3、同步以上修改的文件到hbase的各个节点上
4、在新节点上启动hbase regionserver# cd hbase_install_dir/bin/
# ./hbase-daemon.sh start regionserver5、在hbasemaster启动hbase shell用status命令确认一下集群情况hbase新增一个 regionserver节点补充完成了,下面介绍删除hbase和hdfs节点!
 
集群上既部署有Hadoop,又部署有HBase,因为HBase存储是基于Hadoop HDFS的,所以先要移除HBase节点,之后再移除Hadoop节点。添加则反之。

移除hbase regionserver节点

1、在0.90.2之前,我们只能通过在要卸载的节点上执行;我的hbase版本(0.98.7)# cd hbase_install_dir
# ./bin/hbase-daemon.sh stop regionserver来实现。这条语句执行后,该RegionServer首先关闭其负载的所有Region而后关闭自己。在关闭时,RegionServer在ZooKeeper中的"Ephemeral Node"会失效。此时,Master检测到RegionServer挂掉并把它作为一个宕机节点,并将该RegionServer上的Region重新分配到其他RegionServer。
 
注意:使用此方法前,一定要关闭HBase Load Balancer。关闭方法:hbase(main):001:0> balance_switch false
true
0 row(s) in 0.3290 seconds总结:这种方法很大的一个缺点是该节点上的Region会离线很长时间。因为假如该RegionServer上有大量Region的话,因为Region的关闭是顺序执行的,第一个关闭的Region得等到和最后一个Region关闭并Assigned后一起上线。这是一个相当漫长的时间。以我这次的实验为例,现在一台RegionServer平均有1000个Region,每个Region Assigned需要4s,也就是说光Assigned就至少需要1个小时。2、自0.90.2之后,HBase添加了一个新的方法,即"graceful_stop",在你移除的服务器执行:# cd hbase_install_dir
# ./bin/graceful_stop.sh hostname该命令会自动关闭Load Balancer,然后Assigned Region,之后会将该节点关闭。除此之外,你还可以查看remove的过程,已经assigned了多少个Region,还剩多少个Region,每个Region 的Assigned耗时。
 
补充graceful stop的一些其他命令参数:# ./bin/graceful_stop.sh
Usage: graceful_stop.sh [--config &conf-dir>] [--restart] [--reload] [--thrift] [--rest] &hostname>
thrift If we should stop/start thrift before/after the hbase stop/start
rest If we should stop/start rest before/after the hbase stop/start
restart If we should restart after graceful stop
reload Move offloaded regions back on to the stopped server
debug Move offloaded regions back on to the stopped server
hostname Hostname of server we are to stop最终都需要我们手动打开load balancer:hbase(main):001:0> balance_switch false
true
0 row(s) in 0.3590 seconds然后再开启:hbase(main):001:0> balance_switch true
false
0 row(s) in 0.3290 seconds对比两种方法,建议使用"graceful_stop"来移除hbase RegionServer节点。
官网说明:http://hbase.apache.org/0.94/book/node.management.html​  http://hbase.apache.org/book.html#decommission​  

移除hdfs datanode节点

1、在core-site.xml文件下新增如下内容<property>
<name>dfs.hosts.exclude</name>
<value>/hdfs_install_dir/conf/excludes</value>
</property>2、创建exclude文件,把需要删除节点的主机名写入# cd hdfs_install_dir/conf
# vim excludes
添加需要删除的节点主机名,比如 hdnode1 保存退出3、 然后在namenode节点执行如下命令,强制让namenode重新读取配置文件,不需要重启集群。# cd hdfs_install_dir/bin/
# ./hadoop dfsadmin -refreshNodes它会在后台进行Block块的移动
 4、 查看状态
等待第三步的操作结束后,需要下架的机器就可以安全的关闭了。# ./hadoop dfsadmin -report可以查看到现在集群上连接的节点 正在执行Decommission,会显示:
Decommission Status : Decommission in progress

执行完毕后,会显示:
Decommission Status : Decommissioned如下:Name: 10.0.180.6:50010
Decommission Status : Decommission in progress
Configured Capacity: 917033340928 (10.83 TB)
DFS Used: 7693401063424 (7 TB)
Non DFS Used: 118121652224 (110.00 GB)
DFS Remaining: 4105510625280(3.63 TB)
DFS Used%: 64.56%
DFS Remaining%: 34.45%
Last contact: Mon Nov 29 23:53:52 CST 2015也可以直接通过Hadoop 浏览器查看:
LIVE的节点可以查看到:http://master_ip:50070/dfsnodelist.jsp?whatNodes=LIVE
查看看到卸载的节点状态是:Decommission in progress
等待节点完成移除后,浏览:http://master_ip:50070/dfsnodelist.jsp?whatNodes=DEAD 结果如下:




完成后,删除的节点显示在dead nodes中。且其上的服务停止。Live Nodes中仅剩had2,had3
以上即为从Hadoop集群中Remove Node的过程,但是,有一点一定要注意:
hdfs-site.xml配置文件中dfs.replication值必须小于或者等于踢除节点后正常datanode的数量,即:dfs.replication <= 集群所剩节点数修改备份系数可以参考:http://heylinux.com/archives/2047.html

重载入删除的datanode节点 

1、修改namenode的core-site.xml文件,把我们刚刚加入的内容删除或者注释掉,我这里选择注释掉。<!--

<property>
<name>dfs.hosts.exclude</name>
<value>/root/hadoop/conf/excludes</value>
</property>

-->2、 再执行重载namenode的配置文件# ./bin/hadoop dfsadmin -refreshNodes3、最后去启动datanode上的datanode# ./bin/hadoop-daemon.sh start datanode
starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-root-datanode-had1.out4、查看启动情况# jps
18653 Jps
19687 DataNode ---->启动正常重新载入HBase RegionServer节点
只需要重启regionserver进程即可。
参考:http://www.edureka.co/blog/commissioning-and-decommissioning-nodes-in-a-hadoop-cluster/
           https://pravinchavan.wordpress.com/2013/06/03/removing-node-from-hadoop-cluster/ 查看全部
线上有台服务器随时可能会挂掉,所以需要把在这个服务器上hbase的regionserver和hdfs的datanode节点移除。然后重新拿台新服务器部署接管。
 
之前在文章 http://openskill.cn/article/178 中讲到怎么新增一个hdfs的datanode,所以我先讲一下怎么添加一个hbase的regionserver,然后再讲怎么删除! 


添加hbase regionserver节点


添加步骤如下:
1、在hbase  master上修改regionservers文件
# cd hbase_install_dir/conf
# echo "new_hbase_node_hostname" >> ./regionservers
2、如果你hbase集群使用自身zk集群的话,还需要修改hbase-site.xml文件,反之不用操作!
# cd hbase_install_dir/conf
# vim hbase-site.xml
找到hbase.zookeeper.quorum属性 -->加入新节点
3、同步以上修改的文件到hbase的各个节点上
4、在新节点上启动hbase regionserver
# cd hbase_install_dir/bin/
# ./hbase-daemon.sh start regionserver
5、在hbasemaster启动hbase shell
用status命令确认一下集群情况
hbase新增一个 regionserver节点补充完成了,下面介绍删除hbase和hdfs节点!
 
集群上既部署有Hadoop,又部署有HBase,因为HBase存储是基于Hadoop HDFS的,所以先要移除HBase节点,之后再移除Hadoop节点。添加则反之。


移除hbase regionserver节点


1、在0.90.2之前,我们只能通过在要卸载的节点上执行;我的hbase版本(0.98.7)
# cd hbase_install_dir
# ./bin/hbase-daemon.sh stop regionserver
来实现。这条语句执行后,该RegionServer首先关闭其负载的所有Region而后关闭自己。在关闭时,RegionServer在ZooKeeper中的"Ephemeral Node"会失效。此时,Master检测到RegionServer挂掉并把它作为一个宕机节点,并将该RegionServer上的Region重新分配到其他RegionServer。
 
注意:使用此方法前,一定要关闭HBase Load Balancer。关闭方法:
hbase(main):001:0> balance_switch false
true
0 row(s) in 0.3290 seconds
总结:
这种方法很大的一个缺点是该节点上的Region会离线很长时间。因为假如该RegionServer上有大量Region的话,因为Region的关闭是顺序执行的,第一个关闭的Region得等到和最后一个Region关闭并Assigned后一起上线。这是一个相当漫长的时间。以我这次的实验为例,现在一台RegionServer平均有1000个Region,每个Region Assigned需要4s,也就是说光Assigned就至少需要1个小时。
2、自0.90.2之后,HBase添加了一个新的方法,即"graceful_stop",在你移除的服务器执行:
# cd hbase_install_dir
# ./bin/graceful_stop.sh hostname
该命令会自动关闭Load Balancer,然后Assigned Region,之后会将该节点关闭。除此之外,你还可以查看remove的过程,已经assigned了多少个Region,还剩多少个Region,每个Region 的Assigned耗时。
 
补充graceful stop的一些其他命令参数:
# ./bin/graceful_stop.sh
Usage: graceful_stop.sh [--config &conf-dir>] [--restart] [--reload] [--thrift] [--rest] &hostname>
thrift If we should stop/start thrift before/after the hbase stop/start
rest If we should stop/start rest before/after the hbase stop/start
restart If we should restart after graceful stop
reload Move offloaded regions back on to the stopped server
debug Move offloaded regions back on to the stopped server
hostname Hostname of server we are to stop
最终都需要我们手动打开load balancer:
hbase(main):001:0> balance_switch false
true
0 row(s) in 0.3590 seconds
然后再开启:
hbase(main):001:0> balance_switch true
false
0 row(s) in 0.3290 seconds
对比两种方法,建议使用"graceful_stop"来移除hbase RegionServer节点。
官网说明:http://hbase.apache.org/0.94/book/node.management.html​  http://hbase.apache.org/book.html#decommission​  


移除hdfs datanode节点


1、在core-site.xml文件下新增如下内容
<property>
<name>dfs.hosts.exclude</name>
<value>/hdfs_install_dir/conf/excludes</value>
</property>
2、创建exclude文件,把需要删除节点的主机名写入
# cd hdfs_install_dir/conf
# vim excludes
添加需要删除的节点主机名,比如 hdnode1 保存退出
3、 然后在namenode节点执行如下命令,强制让namenode重新读取配置文件,不需要重启集群。
# cd hdfs_install_dir/bin/
# ./hadoop dfsadmin -refreshNodes
它会在后台进行Block块的移动
 4、 查看状态
等待第三步的操作结束后,需要下架的机器就可以安全的关闭了。
# ./hadoop dfsadmin -report
可以查看到现在集群上连接的节点 
正在执行Decommission,会显示: 
Decommission Status : Decommission in progress

执行完毕后,会显示:
Decommission Status : Decommissioned
如下:
Name: 10.0.180.6:50010
Decommission Status : Decommission in progress
Configured Capacity: 917033340928 (10.83 TB)
DFS Used: 7693401063424 (7 TB)
Non DFS Used: 118121652224 (110.00 GB)
DFS Remaining: 4105510625280(3.63 TB)
DFS Used%: 64.56%
DFS Remaining%: 34.45%
Last contact: Mon Nov 29 23:53:52 CST 2015
也可以直接通过Hadoop 浏览器查看:
LIVE的节点可以查看到:http://master_ip:50070/dfsnodelist.jsp?whatNodes=LIVE
查看看到卸载的节点状态是:Decommission in progress
等待节点完成移除后,浏览:http://master_ip:50070/dfsnodelist.jsp?whatNodes=DEAD 结果如下:
hdead.png

完成后,删除的节点显示在dead nodes中。且其上的服务停止。Live Nodes中仅剩had2,had3
以上即为从Hadoop集群中Remove Node的过程,但是,有一点一定要注意:
hdfs-site.xml配置文件中dfs.replication值必须小于或者等于踢除节点后正常datanode的数量,即:
dfs.replication <= 集群所剩节点数
修改备份系数可以参考:http://heylinux.com/archives/2047.html


重载入删除的datanode节点 


1、修改namenode的core-site.xml文件,把我们刚刚加入的内容删除或者注释掉,我这里选择注释掉。
<!--

<property>
<name>dfs.hosts.exclude</name>
<value>/root/hadoop/conf/excludes</value>
</property>

-->
2、 再执行重载namenode的配置文件
# ./bin/hadoop dfsadmin -refreshNodes
3、最后去启动datanode上的datanode
# ./bin/hadoop-daemon.sh start datanode
starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-root-datanode-had1.out
4、查看启动情况
# jps
18653 Jps
19687 DataNode ---->启动正常
重新载入HBase RegionServer节点
只需要重启regionserver进程即可。
参考:http://www.edureka.co/blog/commissioning-and-decommissioning-nodes-in-a-hadoop-cluster/
           https://pravinchavan.wordpress.com/2013/06/03/removing-node-from-hadoop-cluster/

怎么限制docker容器的磁盘和带宽

Ansible 回复了问题 • 2 人关注 • 1 个回复 • 2107 次浏览 • 2015-10-12 18:10 • 来自相关话题

控制Elasticsearch分片和副本的分配

OpenSkill 发表了文章 • 1 个评论 • 11733 次浏览 • 2015-09-15 00:04 • 来自相关话题

    ES集群中索引可能由多个分片构成,并且每个分片可以拥有多个副本。通过将一个单独的索引分为多个分片,我们可以处理不能在一个单一的服务器上面运行的大型索引,简单的说就是索引的大小过大,导致效率问题。不能运行的原因可能是内存也可能是存储。由于每个分片可以有多个副本,通过将副本分配到多个服务器,可以提高查询的负载能力。
 
    为了进行分片和副本的操作,ES需要确定将这些分片和副本放到集群节点的哪个位置,就是需要确定把每个分片和副本分配到哪台服务器/节点上。
 

一、显式控制分配

生产情景:比如生产环境有三个索引分别为 man、woman、katoey
希望达到的效果:
man索引放置在一些集群节点上
woman索引又单独放置到集群的另外一些集群节点上
katoey索引希望放置在所有放置man索引和woman索引的集群节点上

这么做是因为katoey索引比其他两个索引小很多,因此我们可以将它和其他两个索引一起分配。
但是基于ES默认算法的处理方法,我们不能确定分片和副本的存放位置,但是ES允许我们对其做相应的控制!
1、指定节点的参数



    如上图所示,我们将ES集群划分为两个"空间"。当然你也可以叫做区域,随便命名。我们将左边的三台ES节点服务器放置到zone_one的空间上面,将右边的三台ES节点服务器放到zone_two的空间上。
 
配置
    为了做到我们需要的效果,我们需要将如下属性配置到左边三台ES集群节点服务器的elasticsearch.yml配置文件中node.zone: zone_one    将如下属性配置到右边的三台ES集群节点服务器elasticsearch.yml配置文件中node.zone: zone_two 
索引创建
    当所有节点配置文件属性配置完成后,我们就可以根据空间名称,我们就可以创建索引放到指定的空间。
    首先我们运行如下命令,来创建man索引:# curl -XPOST "http://ESnode:9200/man'
# curl -XPUT "http://ESnode:9200/man/_settings' -d '{
"index.routing.allocation.include.zone" : "zone_one"
}'    第一条命令是创建man索引;第二条命令是发送到_settings REST端点,用来指定这个索引的其他配置信息。我们将index.routing.allocation.include.zone属性设置为zone_one值,就是我们所希望的把man索引放置到node.zone属性值为zone_one的ES集群节点服务器上。
 
    同样对woman索引我们做类似操作:# curl -XPOST "http://ESnode:9200/woman'
# curl -XPUT "http://ESnode:9200/woman/_settings' -d '{
"index.routing.allocation.include.zone" : "zone_two"
}'    不同的是,这次指定woman索引放置在node.zone属性值为zone_two的ES集群节点服务器上
 
    最后我们需要将katoey索引放置到上面所有的ES集群节点上面,配置设置命令如下:# curl -XPOST "http://ESnode:9200/katoey"
# curl -XPUT "http://ESnode:9200/katoey/_settings" -d '{
"index.routing.allocation.include.zone" : "zone_one,zone_two"
}'
 2、分配时排除节点
    跟我们上面操作为索引指定放置节点位置一样,我们也可以在索引分配的时候排除某些节点。参照之前的例子,我们新建一个people索引,但是不希望people索引放置到zone_one的ES集群节点服务器上,我们可以运行如下命令操作:# curl -XPOST "http://EScode:9200/people"
# curl -XPUT "http://EScode:9200/people/_settings" -d '{
"index.routing.allocation.exclude.zone" : "zone_one"
}'    请注意,在这里我们使用的是index.routing.allocation.exclude.zone属性而不是index.routing.allocation.include.zone属性。
 
使用IP地址进行分配配置
    除了在节点的配置中添加一些特殊的属性参数外,我们还可以使用IP地址来指定你将分片和副本分配或者不分配到哪些节点上面。为了做到这点,我们应该使用_ip属性,把zone换成_ip就好了。例如我们希望lucky索引分配到IP地址为10.0.1.110和10.0.1.119的节点上,我们可以运行如下命令设置:# curl -XPOST "http://ESnode:9200/lucky"
# curl -XPUT "http://ESnode:9200/lucky/_settings" -d '{
"index.routing.allocation.include._ip" "10.0.1.110,10.0.1.119"
}'

二、集群范围内分配

    除了索引层面指定分配活着排除分配之外(上面我们所做的都是这两种情况),我们还可以指定集群中所有索引的分配。例如,我们希望将所有的新索引分配到IP地址为10.0.1.112和10.0.1.114的节点上,我们可以运行如下命令设置:# curl -XPUT "http://ESnode:9200/_cluster/settings" -d '{
"transient" : {
"cluster.routing.allocation.include._ip" "10.0.1.112,10.0.1.114"
}
}'    集群级别的控制后续还会分享transient和persistent属性介绍
 

三、每个节点上分片和副本数量的控制

    除了指定分片和副本的分配,我们还可以对一个索引指定每个节点上的最大分片数量。例如我们希望ops索引在每个节点上只有一个分片,我们可以运行如下命令:# curl -XPUT "http://ESnode:9200/ops/_settings" -d '{
"index.routing.allocation.total_shards_per_node" : 1
}'    这个属性也可以直接配置到elasticsearch.ym配置文件中,或者使用上面命令在活动索引上更新。如果配置不当,导致主分片无法分配的话,集群就会处于red状态。
 

四、手动移动分片和副本

    接下来我们介绍一下节点间手动移动分片和副本。可以使用ElasticSearch提供的_cluster/reroute REST端点进行控制,能够进行下面操作:
[]将一个分片从一个节点移动到另外一个节点[/][]取消对分片的分配[/][]强制对分片进行分配[/]
 
移动分片
    假设我们有两个节点:es_node_one和es_node_two,ElasticSearch在es_node_one节点上分配了ops索引的两个分片,我们现在希望将第二个分片移动到es_node_two节点上。可以如下操作实现:# curl -XPOST "http://ESnode:9200/_cluster/reroute" -d '{
"commands" : [ {
"move" : {
"index" : "ops",
"shard" : 1,
"from_node" : "es_node_one",
"to_node" : "es_node_two"
}
}]
}'    我们通过move命令的index属性指定移动哪个索引,通过shard属性指定移动哪个分片,最终通过from_node属性指定我们从哪个节点上移动分片,通过to_node属性指定我们希望将分片移动到哪个节点。
 
取消分配
    如果希望取消一个正在进行的分配过程,我们通过运行cancel命令来指定我们希望取消分配的索引、节点以及分片,如下所示:# curl -XPOST "http://ESnode:9200/_cluster/reroute" -d '{
"commands" : [ {
"cancel" : {
"index" : "ops",
"shard" : 0,
"node" : "es_node_one"
}
} ]
}'    运行上面的命令将会取消es_node_one节上ops索引的第0个分片的分配
 
分配分片
    除了取消和移动分片和副本之外,我们还可以将一个未分配的分片分配到一个指定的节点上。假设ops索引上有一个编号为0的分片尚未分配,并且我们希望ElasticSearch将其分配到es_node_two上,可以运行如下命令操作:# curl -XPOST "http://ESnode:9200/_cluster/reroute' -d '{
"commands" : [ {
"allocate" : {
"index" : "ops",
"shard" : 0,
"node" : "es_node_two"
}
} ]
}'一次HTTP请求包含多个命令
    我们可以在一次HTTP请求中包含多个命令,例如:# curl -XPOST "http://ESnode:9200/_cluster/reroute" -d '{
"commands" : [
{"move" : {"index" : "ops", "shard" : 1, "from_node" : "es_node_one", "to_node" : "es_node_two"}},
{"cancel" : {"index" : "ops", "shard" : 0, "node" : "es_node_one"}}
]
}' 查看全部
    ES集群中索引可能由多个分片构成,并且每个分片可以拥有多个副本。通过将一个单独的索引分为多个分片,我们可以处理不能在一个单一的服务器上面运行的大型索引,简单的说就是索引的大小过大,导致效率问题。不能运行的原因可能是内存也可能是存储。由于每个分片可以有多个副本,通过将副本分配到多个服务器,可以提高查询的负载能力。
 
    为了进行分片和副本的操作,ES需要确定将这些分片和副本放到集群节点的哪个位置,就是需要确定把每个分片和副本分配到哪台服务器/节点上。
 


一、显式控制分配


生产情景:
比如生产环境有三个索引分别为 man、woman、katoey
希望达到的效果:
man索引放置在一些集群节点上
woman索引又单独放置到集群的另外一些集群节点上
katoey索引希望放置在所有放置man索引和woman索引的集群节点上

这么做是因为katoey索引比其他两个索引小很多,因此我们可以将它和其他两个索引一起分配。
但是基于ES默认算法的处理方法,我们不能确定分片和副本的存放位置,但是ES允许我们对其做相应的控制!

1、指定节点的参数
epei1.png

    如上图所示,我们将ES集群划分为两个"空间"。当然你也可以叫做区域,随便命名。我们将左边的三台ES节点服务器放置到zone_one的空间上面,将右边的三台ES节点服务器放到zone_two的空间上。
 
配置
    为了做到我们需要的效果,我们需要将如下属性配置到左边三台ES集群节点服务器的elasticsearch.yml配置文件中
node.zone: zone_one
    将如下属性配置到右边的三台ES集群节点服务器elasticsearch.yml配置文件中
node.zone: zone_two
 
索引创建
    当所有节点配置文件属性配置完成后,我们就可以根据空间名称,我们就可以创建索引放到指定的空间。
    首先我们运行如下命令,来创建man索引:
# curl -XPOST "http://ESnode:9200/man'
# curl -XPUT "http://ESnode:9200/man/_settings' -d '{
"index.routing.allocation.include.zone" : "zone_one"
}'
    第一条命令是创建man索引;第二条命令是发送到_settings REST端点,用来指定这个索引的其他配置信息。我们将index.routing.allocation.include.zone属性设置为zone_one值,就是我们所希望的把man索引放置到node.zone属性值为zone_one的ES集群节点服务器上。
 
    同样对woman索引我们做类似操作:
# curl -XPOST "http://ESnode:9200/woman'
# curl -XPUT "http://ESnode:9200/woman/_settings' -d '{
"index.routing.allocation.include.zone" : "zone_two"
}'
    不同的是,这次指定woman索引放置在node.zone属性值为zone_two的ES集群节点服务器上
 
    最后我们需要将katoey索引放置到上面所有的ES集群节点上面,配置设置命令如下:
# curl -XPOST "http://ESnode:9200/katoey"
# curl -XPUT "http://ESnode:9200/katoey/_settings" -d '{
"index.routing.allocation.include.zone" : "zone_one,zone_two"
}'

 2、分配时排除节点
    跟我们上面操作为索引指定放置节点位置一样,我们也可以在索引分配的时候排除某些节点。参照之前的例子,我们新建一个people索引,但是不希望people索引放置到zone_one的ES集群节点服务器上,我们可以运行如下命令操作:
# curl -XPOST "http://EScode:9200/people"
# curl -XPUT "http://EScode:9200/people/_settings" -d '{
"index.routing.allocation.exclude.zone" : "zone_one"
}'
    请注意,在这里我们使用的是index.routing.allocation.exclude.zone属性而不是index.routing.allocation.include.zone属性。
 
使用IP地址进行分配配置
    除了在节点的配置中添加一些特殊的属性参数外,我们还可以使用IP地址来指定你将分片和副本分配或者不分配到哪些节点上面。为了做到这点,我们应该使用_ip属性,把zone换成_ip就好了。例如我们希望lucky索引分配到IP地址为10.0.1.110和10.0.1.119的节点上,我们可以运行如下命令设置:
# curl -XPOST "http://ESnode:9200/lucky"
# curl -XPUT "http://ESnode:9200/lucky/_settings" -d '{
"index.routing.allocation.include._ip" "10.0.1.110,10.0.1.119"
}'


二、集群范围内分配


    除了索引层面指定分配活着排除分配之外(上面我们所做的都是这两种情况),我们还可以指定集群中所有索引的分配。例如,我们希望将所有的新索引分配到IP地址为10.0.1.112和10.0.1.114的节点上,我们可以运行如下命令设置:
# curl -XPUT "http://ESnode:9200/_cluster/settings" -d '{
"transient" : {
"cluster.routing.allocation.include._ip" "10.0.1.112,10.0.1.114"
}
}'
    集群级别的控制后续还会分享transient和persistent属性介绍
 


三、每个节点上分片和副本数量的控制


    除了指定分片和副本的分配,我们还可以对一个索引指定每个节点上的最大分片数量。例如我们希望ops索引在每个节点上只有一个分片,我们可以运行如下命令:
# curl -XPUT "http://ESnode:9200/ops/_settings" -d '{
"index.routing.allocation.total_shards_per_node" : 1
}'
    这个属性也可以直接配置到elasticsearch.ym配置文件中,或者使用上面命令在活动索引上更新。如果配置不当,导致主分片无法分配的话,集群就会处于red状态。
 


四、手动移动分片和副本


    接下来我们介绍一下节点间手动移动分片和副本。可以使用ElasticSearch提供的_cluster/reroute REST端点进行控制,能够进行下面操作:
    []将一个分片从一个节点移动到另外一个节点[/][]取消对分片的分配[/][]强制对分片进行分配[/]

 
移动分片
    假设我们有两个节点:es_node_one和es_node_two,ElasticSearch在es_node_one节点上分配了ops索引的两个分片,我们现在希望将第二个分片移动到es_node_two节点上。可以如下操作实现:
# curl -XPOST "http://ESnode:9200/_cluster/reroute" -d  '{
"commands" : [ {
"move" : {
"index" : "ops",
"shard" : 1,
"from_node" : "es_node_one",
"to_node" : "es_node_two"
}
}]
}'
    我们通过move命令的index属性指定移动哪个索引,通过shard属性指定移动哪个分片,最终通过from_node属性指定我们从哪个节点上移动分片,通过to_node属性指定我们希望将分片移动到哪个节点。
 
取消分配
    如果希望取消一个正在进行的分配过程,我们通过运行cancel命令来指定我们希望取消分配的索引、节点以及分片,如下所示:
# curl -XPOST "http://ESnode:9200/_cluster/reroute" -d '{
"commands" : [ {
"cancel" : {
"index" : "ops",
"shard" : 0,
"node" : "es_node_one"
}
} ]
}'
    运行上面的命令将会取消es_node_one节上ops索引的第0个分片的分配
 
分配分片
    除了取消和移动分片和副本之外,我们还可以将一个未分配的分片分配到一个指定的节点上。假设ops索引上有一个编号为0的分片尚未分配,并且我们希望ElasticSearch将其分配到es_node_two上,可以运行如下命令操作:
# curl -XPOST "http://ESnode:9200/_cluster/reroute' -d '{
"commands" : [ {
"allocate" : {
"index" : "ops",
"shard" : 0,
"node" : "es_node_two"
}
} ]
}'
一次HTTP请求包含多个命令
    我们可以在一次HTTP请求中包含多个命令,例如:
# curl -XPOST "http://ESnode:9200/_cluster/reroute" -d '{
"commands" : [
{"move" : {"index" : "ops", "shard" : 1, "from_node" : "es_node_one", "to_node" : "es_node_two"}},
{"cancel" : {"index" : "ops", "shard" : 0, "node" : "es_node_one"}}
]
}'

Docker镜像无法删除

采菊篱下 回复了问题 • 2 人关注 • 1 个回复 • 1542 次浏览 • 2015-09-10 11:09 • 来自相关话题

运行docker报错Cannot connect to the Docker daemon. Is 'docker -d' running on this host?

Ansible 回复了问题 • 2 人关注 • 1 个回复 • 2367 次浏览 • 2015-09-01 20:53 • 来自相关话题